Author Affiliations
Abstract
1 Key Lab of Special Display Technology, Ministry of Education, National Engineering Lab of Special Display Tech-nology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
2 School of Instrument Science and Opto-electronics Engineering, Hefei University of Technology, Hefei 230009, China
In this paper, p-chlorophenylacetic acid and p-fluorophenylacetic acid were applied to modify the indium tin oxide (ITO) electrodes. The surface work functions of unmodified ITO, p-chlorophenylacetic acid modified ITO (Cl-ITO) and p-fluorophenylacetic acid modified ITO (F-ITO) are 5.0 eV, 5.26 eV and 5.14 eV, respectively, and the water contact angles are 7.3°, 59.1° and 46.5°, respectively. The increase of the work function makes the hole injection ability of the devices im-proved, which is proved by the hole transport devices. The self-assembly (SAM) layers transfer hydrophilic ITO to hydro-phobic ITO, which makes ITO more compatible with the hydrophobic organic layers, making the organic film more stable during the operation. After modification, the organic light emitting diodes (OLEDs), SAM-modified ITO/NPB/Alq3/LiF/Al, with better performance and stability were fabricated. Especially, the OLED with Cl-ITO (Cl-OLED) has a maximum lumi-nance of 22 428 cd/m2 (improved by 32.9%) and a half-lifetime of 46 h. Our results suggest that employing organic acids to modify ITO surface can enhance the stability and the luminescent properties of OLED devices.
光电子快报(英文版)
2018, 14(4): 262
Author Affiliations
Abstract
1 Key Lab of Special Display Technology, Ministry of Education, National Engineering Lab of Special Display Technology,State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
2 School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009,China
We fabricated organic light-emitting diodes (OLEDs) with the thermally activated delayed fluorescence (TADF) material of 4CzIPN, which show better stability compared with the 4,4’-Bis(carbazol-9-yl)biphenyl (CBP) based devices. The half lifetime of the device using 4CzIPN as host material has doubled, and a slower voltage rise compared with that of CBP-based devices has been achieved, which indicates the improvement of stability. We attribute the better stability to the good film morphology and difficult crystallization property of 4CzIPN. Our results suggest that employing the 4CzIPN as host material can be a promising way of fabricating OLEDs with longer operation lifetime.
光电子快报(英文版)
2017, 13(4): 271
Author Affiliations
Abstract
National Engineering Laboratory for Special Display Technology, Key Laboratory on Special Display Technology of Ministry of Education in China, Provincial and Ministry Joint State Key Laboratory on Advanced Display Technology, Academy of Photoelectric Technology, Hefei University of Technology, Hefei 230009, China
In this study, a simple spraying method is used to prepare the transparent conductive films (TCFs) based on Ag nanowires (AgNWs). Polyvinylpyrrolidone (PVP) is introduced to modify the interface of substrate. The transmittance and bending performance are improved by optimizing the number of spraying times and the solution concentration and controlling the annealing time. The spraying times of 20, the concentration of 2 mg/mL and the annealing time of 10 min are chosen to fabricate the PVP/AgNWs films. The transmittance of PVP/AgNWs films is 53.4%—67.9% at 380—780 nm, and the sheet resistance is 30 Ω/□ which is equivalent to that of commercial indium tin oxide (ITO). During cyclic bending tests to 500 cycles with bending radius of 5 mm, the changes of resistivity are negligible. The performance of PVP/AgNW transparent electrodes has little change after being exposed to the normal environment for 1 000 h. The adhesion to polymeric substrate and the ability to endure bending stress in AgNWs network films are both significantly improved by introducing PVP. Spraying method makes AgNWs form a stratified structure on large-area polymer substrates, and the vacuum annealing method is used to weld the AgNWs together at junctions and substrates, which can improve the electrical conductivity. The experimental results indicate that PVP/AgNW transparent electrodes can be used as transparent conductive electrodes in flexible organic light emitting diodes (OLEDs).
光电子快报(英文版)
2016, 12(3): 203

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!